Efficient Gaussian graphical model determination under G-Wishart prior distributions

نویسندگان

  • Hao Wang
  • Zhengzi Li
چکیده

This paper proposes a new algorithm for Bayesian model determination in Gaussian graphical models under G-Wishart prior distributions. We first review recent development in sampling from G-Wishart distributions for given graphs, with a particular interest in the efficiency of the block Gibbs samplers and other competing methods. We generalize the maximum clique block Gibbs samplers to a class of flexible block Gibbs samplers and prove its convergence. This class of block Gibbs samplers substantially outperforms its competitors along a variety of dimensions. We next develop the theory and computational details of a novel Markov chain Monte Carlo sampling scheme for Gaussian graphical model determination. Our method relies on the partial analytic structure of G-Wishart distributions integrated with the exchange algorithm. Unlike existing methods, the new method requires neither proposal tuning nor evaluation of normalizing constants of G-Wishart distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Aspects Related to Inference in Gaussian Graphical Models With the G-Wishart Prior

We describe a comprehensive framework for performing Bayesian inference for Gaussian graphical models based on the G-Wishart prior with a special focus on efficiently including nondecomposable graphs in the model space. We develop a new approximation method to the normalizing constant of a G-Wishart distribution based on the Laplace approximation. We review recent developments in stochastic sea...

متن کامل

Efficient sampling of Gaussian graphical models using conditional Bayes factors

Bayesian estimation of Gaussian graphical models has proven to be challenging because the conjugate prior distribution on the Gaussian precision matrix, the G-Wishart distribution, has a doubly intractable partition function. Recent developments provide a direct way to sample from the G-Wishart distribution, which allows for more efficient algorithms for model selection than previously possible...

متن کامل

Bayesian inference for Gaussian graphical models beyond decomposable graphs

Bayesian inference for graphical models has received much attention in the literature in recent years. It is well known that when the graph G is decomposable, Bayesian inference is significantly more tractable than in the general non-decomposable setting. Penalized likelihood inference on the other hand has made tremendous gains in the past few years in terms of scalability and tractability. Ba...

متن کامل

Parameter Priors for Directed Acyclic Graphical Models and the Characteriration of Several Probability Distributions

We develop simple methods for constructing parameter priors for model choice among Directed Acyclic Graphical (DAG) models. In particular, we introduce several assumptions that permit the construction of parameter priors for a large number of DAG models from a small set of assessments. We then present a method for directly computing the marginal likelihood of every DAG model given a random samp...

متن کامل

Parameter Priors for Directed Acyclic Graphical Models and the Characterization of Several Probability Distributions

We show that the only parameter prior for complete Gaussian DAG models that satis­ fies global parameter independence, complete model equivalence, and some weak regular­ ity assumptions, is the normal-Wishart dis­ tribution. Our analysis is based on the fol­ lowing new characterization of the Wishart distribution: let W be an n x n, n 2: 3, positive-definite symmetric matrix of ran­ dom variabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012